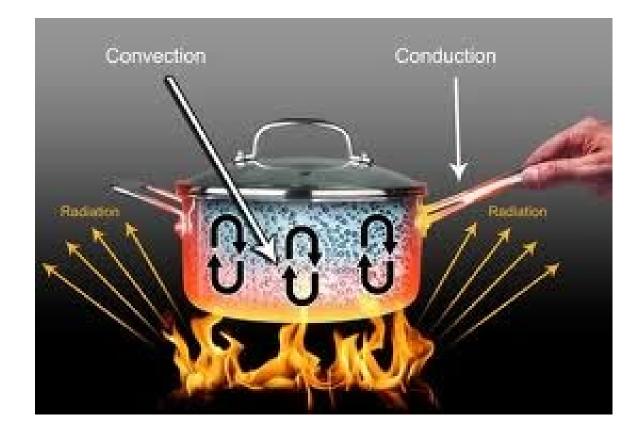


Fouling, Energy Saving, & ROI Tools (Return On Investment)

By: Jim Kibby

2020


Agenda

- 1. What is Heat Transfer?
- 2. Fouling
- 3. Different types of HT equipment
- 4. Energy Savings
- 5. Return on Investment Calculations

<u>Heat transfer</u> -is moving energy (heat, btu, Kw,etc.) from one fluid to another fluid or gas through some type of medium (usually metal)

Fouling

- Fouling occurs when any type of particles both organic or inorganic plug or plate out on heat transfer surfaces creating a resistance to transfer energy
- There are two types of fouling
 - Macro-fouling
 - Micro-fouling

- Macro-fouling
 - Sand
 - Silt
 - Scale
 - Rust
 - Mineral deposits
 Example- Calcium
 Carbonate

- Micro-fouling
 - Biological growth
 - Algae
 - Bacteria
 - Mussels
 - Micro-fouling is controlled by water treatment

Fouling

- Many contaminants mix together to form larger deposits
 - Example- CaCO₃ mixed
 with sand makes
 concrete
- It is these large particles that create problems

Fouling

- Are dissolved solids and particles under 40 micron a problem
- Typically no, as they do not precipitate out of solution until they reach 120F, or if the ph is out of balance
- The Bigger the Particle....The Bigger the Problem

Plate Heat Exchanger

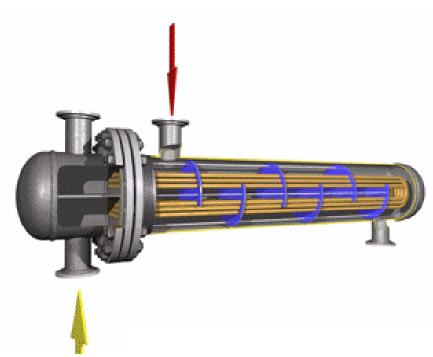
Shell and Tube Heat Exchangers

- Very effective way to transfer heat
- Compact in size
- High sheer stress on plates
 This helps to reduce fouling
- U-Values range from 500-1000

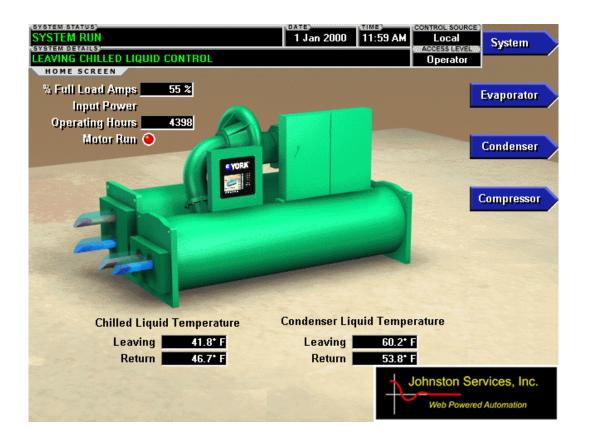
Alfa Laval Plate Heat Exchanger Video

- Turbulence helps prevent particles from settling or plating out. Particle build up creates "Resistance/Fouling" inside equipment
- HVAC plates are usually designed with a 2mm pressing depth
- PHE are designed to pass particles up to half of the plate pressing depth
 - Example- A 2mm plate can pass a particle 1mm (or 1000 microns)
 - Note: Lakos Separators remove particles down to 40 microns

Plate Heat Exchangers

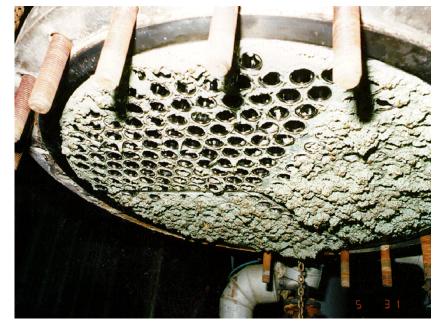

- Every PHE is designed with a certain flow rate
- Reducing flow just a few gpm can dramatically reduce the PHE performance
 - This is why strainers and cartridge filters are not recommended for use with a PHE
 - Separators do not have a barrier and therefore do not build up differential pressure and reduce flow to the PHE.

Shell and Tube Heat Exchanger


- Prone to fouling especially during low flow or downturn
- Particles tend to settle with laminar flow

Chillers

- Chillers are the largest energy consumer in HVAC applications
 - Up to 40%
- Most companies do not protect their chillers from fouling
- As fouling occurs, the chiller must work harder to maintain the designed heat transfer rate


- The #1 goal is to protect your chiller from fouling.
- If you are cleaning tubes every year you are not utilizing proper filtration.
- 90% of customers have to clean chiller tubes each year.

Condenser Fouling Factors						
	Approx.	%				
Fouling	Scale	of Power				
Factor	Thickness	Increase				
(FF)	In Inches	Required				
Clean	.000	0				
.0001	.001	1.1				
.0005	.006	5.5				
.001	.012	11.0	اھ اور			
.002	.024	22.0	ypical ouling			
.003	.036	33.0	Т Ч Г			
.004	.048	44.0				

 In Evaporative Cooling loops we should consider the Particulate Fouling Factor (PFF) and "Scale" build up due to the constant ingression of solids

- Calcium Carbonate (CaCO3) is produced when the cooling tower water evaporates. The mineral CaCO3 can't evaporate so it precipitates out as a fine powder.
- The second you turn on the cooling tower you start to produce CaC03.
- CaCO3 + Sand/silica + water = concrete scale
- This is why many customers punch chiller tubes every year

- Punching or Cleaning tubes is very maintenance intensive
- <u>Refinery Heat Exchanger Tubes Cleaning</u> link to Refinery Tube video
- With proper filtration customers could extend this maintenance to an average of 4-5 years

- Example- 1000 ton chiller paying \$.07 Kw/hr
- Operating 52 weeks/year, 24 hrs/day
- 65% Design efficiency Kw/tn at 70% load
- Annual energy cost \$306,066
- Add a Particulate Fouling Factor of .001 and energy increases 11% or \$33,667/ year

Condenser Fouling Factors					
Fouling Factor	Approx. Scale Thickness	% of Power Increase			
(FF)	In Inches	Required			
Clean	.000	0			
.0001	.001	1.1			
.0005	.006	5.5			
.001	.012	11.0	al מי		
.002	.024	22.0	ypical ouling		
.003	.036	33.0	Т Ч Г		
.004	.048	44.0			

- Now use a typical particulate fouling factor of .002
- Annual energy cost is \$339,455
- Energy increases 22% or \$74,680/year

Green Building?

Are you really operating a *GREEN SYSTEM*?

• Would you run your AC with the windows open?

• Would you run your heat with the doors open?

Filtration is not an option it is a must!

Where else in the HVAC system can you have an impact on energy savings?

11% to 33% energy savings every year just from basin sweeping

- Most paybacks are less than a year
- While there are savings in chemicals, maintenance, and water....these savings are peanuts compared to the potential ENERGY savings to be realized from not fouling HVAC equipment!!!

Return on Investment

Return on Investment Calculator					
Labor Rate (Per Hour) State (Drop Down)	\$65 CA	Type of Application	Basin Cleaning		
kW/hr Rate	\$0.15				
Chiller Data					
Quantity of Chillers	2	Fouling Factor (inches)	.001 = 11% Increase		
Total Design Tonnage (Tons)	500	Typical Hours/Day	20		
Time of Operation (Weeks)	æ	Design Efficiency (%) Typical Load Factor (%)	80%		
	Cooling To	war Data			
Quantity of Towers	2	Sump Dim			
Total Design Tonnage (Tons)	600	Length (ft)	20		
Time of Operation (Weeks)	90	Width (ft)	12		
		Depth (ft)	1		
	Annual Ma	intenance			
Chill	ers	Cooling	lowers		
Total Number of Cleanings pe		Total Number of Cleanings			
# of Persons per cleaning	1	# of Persons per cleaning	2		
# of Hoursper person	12	# of Hours per person			
Est. cost of parts, rentals, etc.	\$1,000	Est cost of parts, rentals, etc			
	Filter	sizing			
Filtration - Ba	cia Classica				
System Flow Rate (gpm)	sin Cleaning 240				
System Flow Rate (gpm) System Pump HP	9				
System Pump Efficiency	70%				
System Pump Head (ft)	100				
Filtration System Price	\$7,500				
Approx. Installation Cost	\$6,000				
	,				
	Compa	arison			
Without F	iltration	With Filt	ration		
Chiller Operating Cost	\$244,755	Chiller Operating Cost	\$220,500		
Chiller Maintenance Cost	\$2,560	Chiller Maintenance Cost	\$1,280		
Tower Maintenance Cost	\$4,660	Tower Maintenance Cost	\$2,330		
Total	\$251,975	Filter Operating Cost	\$4,928		
		Benefits			
	Savings in Chiller Operating (
	Savings in Maintenance Cost				
	Internal Rate of Return	145%			
	Internal Rate of Return 145% Payback Time (years) ≈ 9 months		5		
Visit Lakasa	onfigurator com fee	izing coloction and	uch more		
VISIT Lakosc	omigurator.com for s	izing, selection, and m	ach more		
Claude Laval Corporation					
1 55 9 255 1601		6-			
Presino, CA USA			AKOS		
www.lakos.com			FILTRATION SOLUTIONS		
ver7. Sept 13 2017					

Link to ROI Spreadsheet

Questions?

- •Chillers consume 40% of all energy used in an HVAC system
- •Fouling factor of .001 equals .012in of scale and increases energy consumption 11%

•Micro fouling is controlled through chemical treatment.

THANK YOU

